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General context and motivation

Uncertain data: two elements need to be distinguished:
- The set of events possible to come,
- Probabilistic characterization of these events

e Stochastic Optimization:
— When we know the distribution law characterizing the uncertainty:

* Multistage (recourse) models,
* Chance constrains models.

* Robust Optimization

— When no probabilistic information is available and the uncertainty is
characterized by only the set of all events possible to occur.

— We look for the best solution to be feasible for the set of possible events,
which comes to search for optimization in the worst case.



Stochastic optimization in short

* Two methodologies:

— The approach of optimization on the average
* Recourse problems

— The probabilistic approach

* Chance Constrained Programming



Stochastic optimization in short

Notation:

Q : set of events o

A : subset of events (included in Q)
P : Probabilistic metric on A.

x : decision variables

c : cost function

min - cx min cx
:l(w)l _ /l(w) S.C. P(fl(u;«)t i h(w)) i '}
x>0

x>0



Probabilistic optimization

Programming with joint constraints

min cx
s.C. P(J’l(u,)l z h(w)) z O
x>0
Programming with separated constraints

min cx

s.c. P(Aj(w)r = hj(w)) = ajy,

”
r >0
The case of a finite number K of scenarios
min  cx
min cx s.c. Apr = ophyp + (0p —1).M, Vke{l,...,K}
s.c. P(Ax>h)>a — Zi}zl Oppr = a
x>0 o € {0, 1}, Vke{l,... K}

x>0



Probabilistic optimization

Let’s consider:

K(a) = {;1: | P(A(w)z > h(w)) > a} a €)0,1]

1) suppose that A(w) is a vector, with second term h(w) uncertain (i.e., A(w) =
A). Then, if F, is the distribution function of r.v. h, we have:

P(Ar > h(w)) = F,(Ax)

K(a) = {z|Fp(Ax) = a}

K(a) = {z|Az > F, ' (o)}




Probabilistic optimization
2) Consider the case with r.v. Gaussian's, (separated constraints).
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Probabilistic optimization

* The probabilistic approach is difficult in general
to tackle:

— Only the r.v. Gaussians case can be handled, the
others are difficult, including the uniform case.

— The set of feasible solutions is not necessary convex.



General context and motivation
Stochastic optimization in short
Introduction to robust optimization




Introduction to robust optimization

Robust optimization is used when no probabilistic
information is available; the only information is the set of
possible events that can occur.

We look for the best solution to be feasible for the set of
possible events, which comes to search for optimization in
the worst case.

— Usual optimization criterion studied: Minmax cost



Introduction to robust optimization

* minmax cost .

“minmax cost”, (Soyster, 1970): Optimizing for the worst scenario: the robust
solution should, for instance, minimize the maximal cost resulted for the
considered scenarios (a finite number K).

min maxy T = min =z
s.c. Apx >bp,Vhke{l, ..., K} s.c. epr <z, Vhke{l, ..., K}
re X Az = b VE e {1,..., K}
reX

— The size of the robust programming increases with the number of scenarios.

— The complexity can radically change when we consider several scenarios:

* When the weights of links in a graph are uncertain, the shortest path
problem becomes NP-difficult, even for two scenarios (| K| = 2).



Introduction to robust optimization

— Some questions may be raised:

1. Which is the best compromise between the feasibility and the
robustness ?

2. How one can build the “best” set of events for which the solution
should be robust ?

3. Is there any methodology for “optimization under uncertainty”
with moderated theoretical and practical complexity?



State of art

Some works on the link between robust optimization and the
feasibility probability of the solutions:

A. Ben-Tal and A. Nemirovski, Robust solutions of Linear Programming problems
contamined with uncertain data, Math. Prog. (2000)

 [BS04] D. Bertsimas et M. Sim, The Price of Robustness, Operations Research (2004)

A. Nemirovski and A. Shapiro, Convex Approximations of Chance Constrained
Programs, a paraitre dans SIAM J. Optim.

... and others!



Extended robust optimization, Bertsimas and
Sim, [BS04]

The approach proposed by Bertsimas and Sim can be written as below:

min cX
(CCP) s.c Pr(Ax < b) >
x €N
l
min cx
(RP) sc Ax=<V
x €N

with A’, b’ such that: ¥x € IN\x<b’ = Pr(Ax<b)>1-c¢.
Thus, any feasible solution for (RP) is also feasible for (CCP)

This model is directly usable for ILP problem:s.



Model description ([BS04])

Notation : /gives the set of constraints,J gives the set of columns

Hypotheses :
» Eachterm Aj 1s uncertamn: A; € [Z,-j — A,-J-,Z,'j + Ajf).

» [ €{0....,|J|} rat most ['; can take their worst value

(n-T" ) terms take their
nominal value
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Model description ([BS04])

The robust problem (initially)

nin CT
5.C. Z(zva )%+ Ajx <b ¥SCJtq |S|=T., Viel,
jES j(—J\\
€T > )

The robust problem proposed by [BS04]

min Cxr
5.C. EiEJ A,;,'Xj + 2 L —|— ZJPJ E' < b r | _’JEI 3
;o Py __ ‘J.sz‘. | .?.(.z.;)) el xJ,
T; > (7) sz‘i ), z; 20, V(z,7) €1 x J.

The robust variant of an LP is also an LP
The robust variant of an ILP is also an ILP.



Why the model is interesting?

The model preserves the linearity;

The robust variant can be given through a compact formulation,
comparable to the nominal problem.

“reasonable modeling”, it avoids the worst possible matrix (or
events), in general less probable:

[As-A;, A+A ]

//[2\1_2-32 VA+A]

Feasibility probability 1 — € = choice of coefficient I,



Thank you



